Вторник, 21.11.2017, 20:31
Приветствую Вас Гость | RSS

-Краснослободская СОШ №1

Меню сайта
Статистика
Онлайн всего: 1
Гостей: 1
Пользователей: 0

Посетившие нас сегодня:
Друзья сайта

Каталог статей

Главная » Статьи » Опыт учителей » Математика

Пропорция в жизни человека

Пропорция в жизни человека

В школе на уроках естественных наук: физики, химии, биологии, астрономии, географии и на уроках гуманитарных наук: истории, литературы, родного и иностранного языков мы изучаем природу и общество. На уроках музыки, рисования, черчения, гимнастики нас вводят в мир искусств. Кроме этих дисциплин, этих предметов, на протяжении всех школьных лет мы изучаем математику: арифметику, алгебру, геометрию, тригонометрию. К каким же наукам причислить эти дисциплины? Что составляет предмет их изучения? Многие учёные относят математику к естественным наукам, так как математика изучает окружающий нас мир: предметы и явления природы, общества и человеческого мышления. Физика, химия, биология изучают предметы и явления окружающего нас мира со стороны их качества. Математика изучает те же предметы, явления со стороны их количества, пространства и времени, говорят – со стороны их формы.

Поэтому математику учёные считают естественной наукой, изучающей наш материальный мир. Математика пронизывает все отрасли знания, в том числе и гуманитарные науки. Без математики сейчас не обходятся экономические, филологические и другие науки. Поэтому некоторые учёные считают математику прослойкой между естественными и гуманитарными науками.

Великий немецкий математик Карл Фридрих Гаусс в своё время назвал математику «царицей всех наук» и «царицей и слугой всех наук». Так её называют за благородное служение практически всем наукам.

В математике много методов, позволяющих решать те или иные задачи. Ещё в древней Греции математики использовали такой аппарат, как ПРОПОРЦИЯ.

Пропорцией называют равенство отношений двух или нескольких пар чисел или величин. Например, размеры модели машины или сооружения отличаются от размеров оригинала одним и тем же множителем, задающим масштаб модели. Поэтому, если выбрать на оригинале 4 точки А,В,С и Д и обозначить на через А1,В1,С1 и Д1 соответствующие точки на модели, то будет выполняться равенство ==. Такое равенство отношений и называют пропорцией. Она показывает, что отношение расстояний между точками на оригинале такое же, как отношение расстояний между соответствующими точками на модели.

В древности в неявной форме идеей пропорциональности пользовались при решении задач методом сложного положения: давали искомой величине значение, вычисляли, какое значение должна при этом иметь одна из данных величин, и сравнивали с условием задачи. Отношение величин давало коэффициент, на который надо умножить выбранное значение, чтобы получить правильный ответ.

Систематически пропорции начали изучать в Древней Греции. Сначала рассматривали лишь пропорции, составленные из натуральных чисел, и поэтому считали, что числа а, в, с, d образуют пропорцию, если а является тем же кратным, той же долей или той же дробью от в, что и с от d. В IV в. до н. э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы. Древнегреческие математики решали задачи, которые в наши дни решают с помощью уравнений, а место алгебраических преобразований занял переход от одной пропорции к другой.

В современной математике применяют различные СВОЙСТВА ПРОПОРЦИЙ.

Основное свойство пропорции. Если a : b = c : d, то a∙d = b∙c

Обращение пропорции. Если a : b = c : d, то b : a = d : c

Перестановка средних и крайних членов. Если a : b = c : d, то a : c = b : d (перестановка средних членов пропорции), d : b = c : a (перестановка крайних членов пропорции).

Увеличение и уменьшение пропорции. Если a : b = c : d, то

(a + b) : b = (c + d) : d (увеличение пропорции),

(a – b) : b = (c – d) : d (уменьшение пропорции).

Составление пропорции сложением и вычитанием. Если a : b = c : d, то

(a + с) : (b + d) = a : b = c : d (составление пропорции сложением),

(a – с) : (b – d) = a : b = c : d (составление пропорции вычитанием)

Математика применяется практически во всех сферах жизни человека. И в повседневной жизни мы используем математические навыки, в том числе и пропорцию.

КУЛИНАРИЯ

Понятие пропорции используется в кулинарии. Когда мы готовим какое-либо блюдо, мы стараемся использовать то количество продуктов, которое указано в поварской книге. Это делается для того, чтобы не испортить блюдо. Если мы возьмём больше соли, то пересолим, а если меньше, то будет не вкусно. Ещё пропорция позволяет рассчитать количество продуктов для приготовления одного и того же блюда для разного числа гостей.

МЕДИЦИНА

В медицинской практике врачи следят за тем, сколько и когда надо давать лекарства больному. В правильных дозах лекарство даёт лечебный эффект, в меньших – оно бесполезно, а в больших – приносит вред. При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд.

ТЕХНОЛОГИЯ

На уроках технологии мы также используем пропорцию. Когда мы хотим сшить какую-либо вещь меньшего или большего размера, мы уменьшаем или увеличиваем выкройку до нужного нам размера. Например, выкройка фартука на себя и на куклу. Размеры элементов кукольного фартука отличаются от соответствующих размеров моего фартука в одно и тоже число раз.

ГЕОГРАФИЯ

В географии также применяют пропорцию – масштаб. Масштабом называют отношение длины отрезка на карте или плане к длине соответствующего отрезка на местности. Масштаб показывает во сколько раз расстояние на плане меньше, чем указанное расстояние на самом деле.

Существуют разные виды масштаба: численный, линейный и именованный. Численный масштаб записывают в виде дроби, в числителе которой стоит единица, а в знаменателе — степень уменьшения проекции. Например, масштаб 1:5 000 показывает, что 1 см на плане соответствует 5 000 см (50 м) на местности. Более крупным является тот масштаб, у которого знаменатель меньше. Например, масштаб 1:1 000 крупнее, чем масштаб 1:25 000. По численному масштабу узнают, во сколько раз уменьшены на плане все расстояния. Чем больше число в знаменателе дроби, тем в большее число раз уменьшено настоящее расстояние, тем мельче карта.

Запись «в 1 см – 10 м» называют именованный масштабом, а расстояние на местности, соответствующее 1 см на плане, называют величиной масштаба. С помощью величины масштаба очень удобно определять расстояния.

На планах помещают также и линейный масштаб. Линейный масштаб — это графический масштаб в виде масштабной линейки, разделённой на равные части. Это – прямая линия, разделённая на равные части (обычно сантиметры). У каждого деления линии подписывают соответствующее ему расстояние на местности. Первое деление слева от 0 делят на более мелкие части. С помощью линейного масштаба узнают точные размеры объектов, изображённых на плане местности, и расстояния между ними.

Задача. Найдите расстояние от Москвы до Северного полюса, если на карте это расстояние – 3,5 см, а М 1:100000000.

Решение.

Составим пропорцию: х= , т. е. х= 350000000см=3500км.

Ответ. Расстояние на местности от Москвы до Северного полюса – 3500км.

ИЗОБРАЗИТЕЛЬНОЕ ИСКУССТВО

Алексей Петрович Стахов, доктор технических наук (1972 г. ), профессор (1974 г. ), академик Академии инженерных наук Украины так пишет о гармонии:

"С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т. д. , демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного, сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония.

Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине. Красота скульптуры, красота храма, красота картины, симфонии, поэмы. Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?. ".

Известный итальянский теоретик архитектуры Леон-Баттиста Альберти, написавший много книг о зодчестве, говорил о гармонии следующее:

"Есть нечто большее, слагающееся из сочетания и связи трех вещей (числа, ограничения и размещения), нечто, чем чудесно озаряется весь лик красоты. Это мы называем гармонией, которая, без сомнения, источник всякой прелести и красоты. Ведь назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту. Она охватывает всю жизнь человеческую, пронизывает всю природу вещей. Ибо все, что производит природа, все это соизмеряется законом гармонии. И нет у природы большей заботы, чем та, чтобы произведенное ею было совершенным. Этого никак не достичь без гармонии, ибо без нее распадается высшее согласие частей".

В Большой Советской Энциклопедии дается следующее определение понятия "гармония":

"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".

"Золотая пропорция" - это понятие математическое и ее изучение – это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики, которая изучает гармонию и красоту с математической точки зрения.

В классике изобразительного искусства на протяжении многих веков прослеживается приём построения пропорции, называемый золотым сечением, или золотым числом. (этот термин ввел Леонардо да Винчи). Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

a : b = b : c или с : b = b : а.

В искусстве за золотое сечение принимают число 1:1,62 или

= , то есть приближённое выражение отношения меньшей величины в пропорции к её большей величине.

Золотое число наблюдается в пропорциях гармонично развитого человека: длина головы делит в золотом сечении расстояние от талии до макушки.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела: расстояние от кончиков пальцев до запястья и от запястья до локтя равно 1:1. 618 расстояние от уровня плеча до макушки головы и размера головы равно 1:1. 618 расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1. 618 расстояние точки пупа до коленей и от коленей до ступней равно 1:1. 618 расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1. 618 расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1. 618 расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1. 618

В произведениях изобразительного искусства художники и скульпторы осознанно или подсознательно, доверяя своему тренированному глазу часто применяют соотношение размеров в золотой пропорции.

Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и ещё во многих знакомых нам вещах, например, расположение листьев на побеге тоже подчиняется золотому числу!

С глубокой древности люди используют математический аппарат в повседневной жизни. Одним из них является пропорция. Она используется, начиная с приготовления пищи и заканчивая произведениями искусства, такими как скульптура, живопись, архитектура, а также в живой природе.

 

 

Категория: Математика | Добавил: Scorpion (24.01.2017)
Просмотров: 77 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Электронный журнал
Поиск
Форма входа